Site

Team

Evaluation

Prioritization

Decatur/Barding & Spawr LF FLD984 766 378

CERCLA Report

EPA Region 5 Records Ctr.

Illinois Environmental **Protection Agency**

2200 Churchill Road P. O. Box 19276 Springfield, IL 62794-9276

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE INFORMATION	. 2
2.1 Site Description	
2.2 Site History	
2.3 History With IEPA	
2.4 Site Regulatory Status	/
3.0 FIELD ACTIVITIES AND ANALYTICAL RESULTS	0
3.1 Introduction	
3.2 Site Reconnaissance	
3.3 Site Representative Interview	
3.4 Sampling Activities	
3.4.1 Soil/Sediment Sampling	
3.4.2 Groundwater Sampling	
3.5 Analytical Results	
3.6 Key Samples	15
4.0 SOURCE CHARACTERIZATION	
4.1 Introduction	22
4.2 Landfill	
5.0 MIGRATION/EXPOSURE PATHWAYS	23
5.1 Introduction	23
5.2 Groundwater	
5.3 Surface Water	
5.4 Soil Exposure	
5.5 Air Pathway	
6.0 ADDITIONAL RISK-BASED OBJECTIVES	28
6.1 TACO Soil Objectives	28
6.2 TACO Groundwater Objectives	29
6.3 Sediment Benchmarks	

APPENDICES

- A 4-Mile Radius Map
- B 15-Mile Surface Water Route Map
- C STEP Photographs
- D Target Compound List
- E 1994 CERCLA SIP Sample Results
- F Well Logs

LIST OF TABLES

- 3-1 Soil/Sediment Sample Descriptions
- 3-2 Soil/Sediment Sample Summary
- 3-3 Groundwater Sample Summary
- 3-4 Key Soil/Sediment Samples
- 3-5 Key Groundwater Samples
- 5-1 Groundwater User Population
- 6-1 TACO Groundwater Objectives
- 6-2 Comparison of Sediment Samples to Benchmarks

LIST OF FIGURES

- 2-1 Site Location Within The State
- 2-2 Vicinity Map
- 2-3 Site Map
- 3-1 Approximate Sample Locations

1.0 INTRODUCTION

Decatur/Barding & Spawr Landfill was added to CERCLIS (Comprehensive Environmental Response, Compensation and Liability Information System) in April of 1988 after receiving complaints about the presence of drums on site and leachate leaving the site. In 1989 a CERCLA Preliminary Assessment was conducted. The investigation of the site continued in 1993 and 1994 when a CERCLA Screening Site Inspection was conducted at the site. Because it was found that environmental concerns still existed at the site, further investigation was conducted in the form of a Site Team Evaluation Prioritization (STEP), which is the subject of this report.

2.0 SITE INFORMATION

2.1 SITE DESCRIPTION

The Decatur/Barding & Spawr Landfill is an inactive landfill located on South Wyckles Road, south of U.S. Route 36, just west of Decatur in Macon County Illinois. The irregularly-shaped property occupies approximately 66 acres, although only approximately one-half of this area was filled. To the north the site is bordered by Cantrell Road and residential areas; to the east, the site is bordered by Wyckles road with the Macon County Conservation District Rock Springs Center beyond. To the south the site is bordered by a Decatur Sanitary District water treatment facility (along Wyckles Road) and the Sangamon River. Residential areas and woodland are situated to the west. Refer to Figures 2-1, 2-2, and 2-3. A 2-acre area in the northeast corner of the property is occupied by Standard Waste, a waste hauling and recycling business. The topography of the site is sloping and irregular, in part, because of landfilling activities. The site, for the most part, is covered with heavy vegetation consisting of tall grasses and trees. A map showing the topography within 4 miles of the site can be found in Appendix A, and a map showing the surface water route 15 miles downstream of the site can be found in Appendix B.

2.2 SITE HISTORY

Utilization of the property prior to landfilling operations is unknown. It was most likely vacant or utilized for farming. Landfilling operations began in the mid-1950s by Macon County Landfill Corporation, which leased the property from Junior L. Barding. This corporation, formed by several trash haulers, used the site for landfilling industrial and municipal wastes until

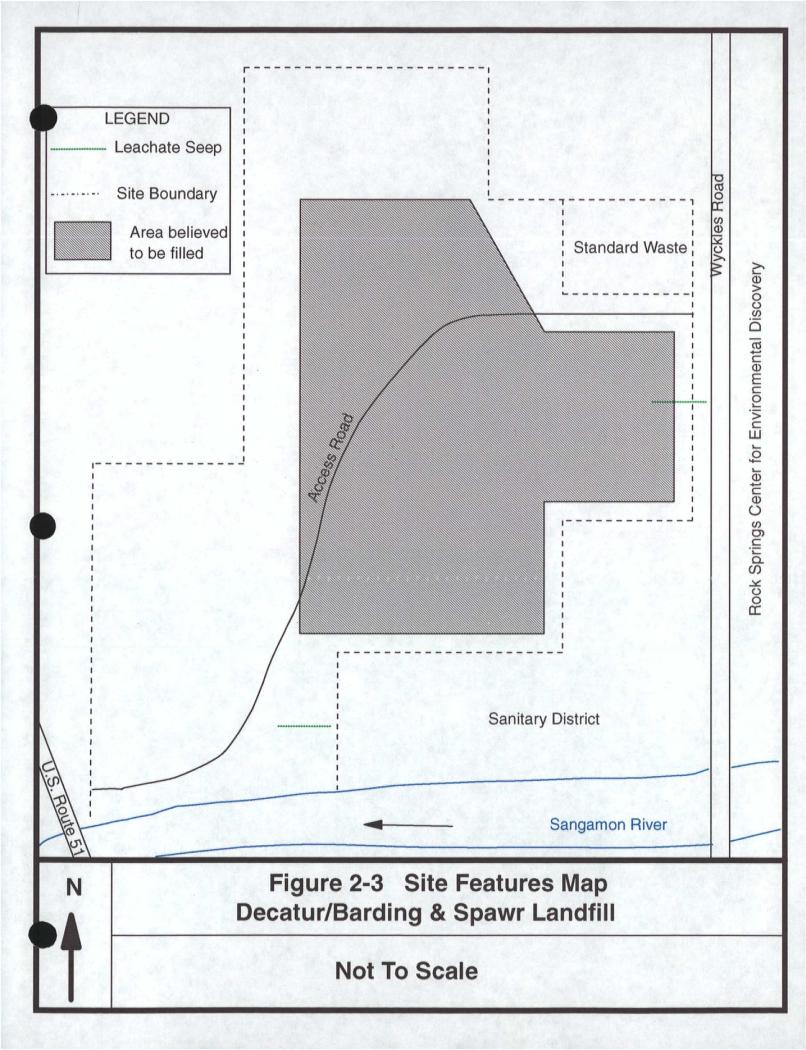



Figure 2-2
Vicinity Map
Decatur/Barding & Spawr LF
Not To Scale

the middle or late 1960s, when the landfilling operations moved across Highway 51. During its active life, the site was presumably operated as both an open dump and a landfill. A pit for disposing of liquid industrial waste was allegedly located onsite, near the center of the property, close to the haul road. The landfill has remained inactive since operations moved across the highway. From 1962 until 1980, James Spawr and Junior Barding Jr. operated a construction firm on two acres of the property. Since the 1980s they have operated Standard Waste at this location.

2.3 HISTORY WITH IEPA

The IEPA first became involved with the site in 1984, when the city of Decatur reported the presence of drums located on the site adjacent to the west border of the sanitary district property. Upon investigation, the IEPA discovered nineteen 55-gallon drums containing unknown liquid. Available file information does not indicate the fate of the drums, although they were not visibly apparent at the time of the STEP inspection.

The IEPA responded to various complaints concerning the facility in 1987. The first complaint was about bright orange water flowing along the west ditch of Wyckles Road, through a culvert to the conservation District property and eventually into the river. The resulting investigation discovered cover problems and leachate flow.

In October 1987, IEPA collected leachate samples and groundwater samples from the neighboring sanitary district property. The leachate was found to contain benzene,

chlorobenzene, and tetrachloroethylene in the parts per billions ranges. The groundwater was found to contain benzene, chlorobenzene, tetrahydrofuran, and benzothiazolone in parts per billion ranges.

Subsequently, the site was added to CERCLIS in April 1988, with a CERCLA Preliminary

Assessment and Screening Site Inspection following. Other than these CERCLA activities, the

IEPA has not conducted further activities at the site since 1987.

2.4 SITE REGULATORY STATUS

The Decatur/Barding & Spawr landfill began operations during the 1950s, and continued until the late 1960s, all prior to both IEPA existence and the Resource Conservation and Recovery Act.

3.0 FIELD ACTIVITIES AND ANALYTICAL RESULTS

3.1 INTRODUCTION

As part of the 1996 CERCLA STEP inspection, eight soil/sediment samples were collected in seven locations, and six groundwater samples were collected from four locations. The sampling was conducted in accordance with the previously prepared work plan, which was reviewed by U.S. EPA, Region 5 prior to initiation of sampling activities. During the sampling event, one change was made from the work plan, as sample X104 was not collected since soil screening revealed no organic vapors at this location. Photographs of the sample locations can be found in Appendix C.

3.2 SITE RECONNAISSANCE

On October 29, 1996 a reconnaissance of the site was conducted. This included a visual inspection of the site to determine site status, note predominant site features, identify possible sample locations and any safety concerns. The landfill was found to be inactive and covered with heavy vegetation. Leachate/runoff routes were noted at various locations throughout the site, particularly along Wyckles Road and around the perimeter of the sanitary district property. The old access road through the site was identified and followed to its end near Highway 51. Upon leaving the site, the surrounding areas were surveyed to determine groundwater use in the area. It was determined, through discussions with local residents, that homes to the north of the site, along Wyckles Road were served by a public water supply, while those homes located northwest of the site along and off of Cantrell Road utilized private wells. Permission to sample two private wells was obtained at this time. Macon County Landfill was observed to be

operating to the west of the Decatur/Barding & Spawr landfill, across Highway 51.

3.3 SITE REPRESENTATIVE INTERVIEW

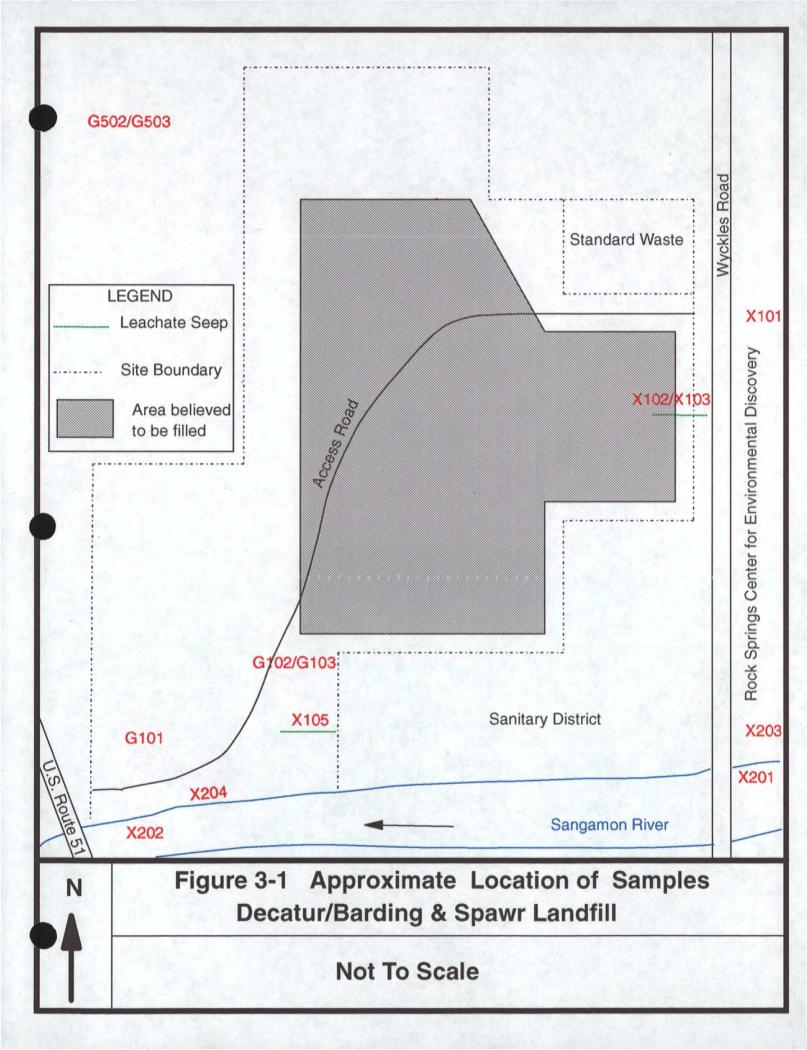
On October 7, 1996 a letter was sent to James Spawr and Junior Barding at the Standard Waste address, to inform them that the IEPA had some concerns about possible environmental problems at the site, and informed them of the state's Site Remediation Program. On October 31, another letter was sent to Mr. Spawr and Mr. Barding informing them of the agency's intent to collect environmental samples from their property. Also during this time, the agency was in contact with Mr. Mark Miller, attorney for Barding & Spawr. The purpose and process of the STEP inspection was explained to Mr. Miller, and subsequently, consent to sample the property was given. Mr. Barding and Spawr hired SKS Engineers, Inc. to be present for the sampling event and to collect split samples. Mr. Bob Krimmel, of SKS, was informed of the sampling dates, approximate sample locations, and number and type of samples to be collected.

3.4 SAMPLING ACTIVITIES

Sampling activities occurred on November 13 and 14, 1996. On these dates eight soil/sediment samples were collected in seven locations, and six groundwater samples were collected from five locations. The soil/sediment samples were shipped to USEPA contract laboratories, the organic analyses being performed by American Analytical & Technical Services, Inc in Baton Rouge, Louisiana, and inorganic analyses being performed by Chemtech Consulting Group of Englewood, New Jersey. The groundwater samples to be analyzed for organic compounds were sent to Mitkem Corporation of Warwick, Rhode Island, and the groundwater samples to be

analyzed for inorganic compounds were sent to the USEPA Central Region Laboratory in Chicago, Illinois. All samples were analyzed for the complete Target Compound List, which can be found in Appendix D.

3.4.1 SOIL/SEDIMENT SAMPLING


The eight soil/sediment samples were collected onsite, from leachate/runoff routes, from the Sangamon River and from its adjacent bottomland area. Table 3-1 describes the samples and Figure 3-1 shows approximate sample locations. Mr. Brian Bradshaw of SKS Engineering, Inc. split samples from each sample location.

Samples were collected using stainless steel trowels. A clean trowel was used at each sample location eliminating the need to decontaminate equipment in the field. Sample material was transferred directly from the trowel into the sample jars. The duplicate sample material was mixed in a stainless steel pan prior to placement into sample jars (except material for the volatile analysis, which was transferred from the sample point directly into sample jars).

Sample X101, a background sample, was collected from the east side of Wyckles Road, across from the Standard Waste office building. This area is designated as Miami Silt Loam in the Macon County Soil Survey. (Onsite soil types consist of Miami Silt Loam; Orthents, loamy; Lawson silty clay loam; and Sawmill silty clay loam.) The sample was collected in an area of tall weeds. Duplicate samples X102/X103 were collected from a gully emanating from the east slope of the landfill along Wyckles Road. This gully drains into a roadside ditch, which flows

TABLE 3-1
SOIL/SEDIMENT SAMPLE DESCRIPTIONS

SAMPLE	DEPTH	LOCATION	APPEARANCE
X101	1" - 4"	East of Wyckles Rd. across from Standard Waste office; 73' east of east edge of Wyckles.	Medium brown clayey loam.
X102/X103	0" - 4"	Approx. 39' west of west edge of Wyckles & 218' south of south edge of south Standard Waste drive.	Light brown, moist clay, some orange iron stains.
X105	0" - 3"	Along western border of sanitary facility; 15' west of south fence & 14' north of southern-most fence corner.	Sandy silt with some gravel; gray-brown.
X201	0" - 4"	North bank of river, from water's edge; even with 4th (from north) verticle bridge support.	Dark brown, sandy material.
X202	0" - 3"	North bank of river, approx. 24" up from water's edge, where small ditch enters river from bottomland.	Medium brown; sandy clay.
X203	0" - 3"	East side of Wyckles in bottomland; approx. 38' east & 48' south of 4th (from north) verticle bridge support.	Dark loam material.
X204	0" - 2"	Near southwest corner of sanitary facility fence; approx. 79' west & 90' south of sw corner of fence.	Medium brown; sandy clay; soft & moist.

under Wyckles via a culvert onto the Rock Springs property. Drainage entering the Rock Springs property at this point has been the issue of past complaints. The sample was collected to determine if leachate/runoff from the landfill contains hazardous constituents, which may be leaving the site. Sample X105 was collected from the bottom of a leachate stream running from the east slope of the landfill toward the sanitary facility. Again, the sample was collected to determine if leachate from the landfill contained hazardous constituents that may be leaving the site.

Sample X201 was collected from the northern bank of the Sangamon River at a point upstream of the site, to represent upstream conditions. The sample was collected just east of Wyckles Road. Sample X202 was collected from the north bank of the Sangamon River at a point adjacent to the Barding & Spawr property where a small dry ditch enters the river from the bottom land. This sample was collected to determine if contaminants were entering the river at this location. Sample X203 was collected from the bottomland upstream of the site, on the east side of Wyckles Road. The sample serves to represent background conditions of bottomland wetlands (designated by National Wetland Inventory). Sample X204 was collected from the bottomland existing on the Barding and Spawr property. The sample was taken downslope of the sanitary facility, from a small dry ditch originating to the north. The sample was collected to determine if hazardous constituents were entering the bottomland along this drainage path.

3.4.2 GROUNDWATER SAMPLING

Six groundwater samples were collected from four locations, which are illustrated in Figure 3-1.

Three of these samples were collected onsite using a Geoprobe®, while the remainder were collected off site from private wells. Sample G101 was collected from a point near the southern edge of the site, to determine if the landfill has affected groundwater, and if so, whether it is flowing toward the Sangamon River. Duplicate samples G102/G103 were collected near the center of the Barding and Spawr property, off of the northwest corner of the sanitary district property. These samples were collected using the Geoprobe® to determine if landfilling activities at the site have affected groundwater.

Sample G501, a drinking water sample, was collected from a private well located approximately 1.5 miles southeast of the site. The sample is from the south side of the Sangamon River, and was collected to determine groundwater conditions at a point beyond the influence of the site. Duplicate samples G502/G503, also drinking water samples, were collected from a residence located approximately 0.13 mile west of the site's filled area. The samples were collected to determine if groundwater in the nearby residential area has been affected by landfilling activities at the site. The samples were collected from outside water spigots, with the water running directly from the spigot into sample containers. The duplicate sample was collected for purposes of laboratory quality control/quality assurance measures.

3.5 ANALYTICAL RESULTS

SOIL/SEDIMENT

Laboratory analyses of soil/sediment samples collected from the landfill itself (X102/X103, X105) revealed low concentrations of volatile organic compounds (possibly laboratory artifacts),

low concentrations of semi-volatile organic compounds, pesticides, and inorganic analytes.

Samples collected from the river sediment and nearby bottomland wetland area revealed the presence of low concentrations of semi-volatile organic compounds, pesticides, and inorganic analytes.

GROUNDWATER

Analyses of the onsite groundwater samples revealed the presence of low concentrations of six volatile and five semi-volatile organic compounds, and various inorganic compounds. The residential drinking water samples (G502/G503) showed the presence of only inorganic constituents.

A summary of the soil/sediment sample data are presented in Table 3-2, and groundwater sample data are summarized in Table 3-3. Analytical results from the 1994 CERCLA Site Inspection Prioritization are included in Appendix E.

3.6 KEY SAMPLES

Key samples are those samples with contaminant concentrations significantly above background concentrations (three times greater than background concentration, or at levels greater than or equal to the background sample detection limit for those compounds not detected in background samples). Also, the contaminants must be attributable to the site.

Table 3-4 (Key Soil/Sediment Sample Summary) identifies those soil/sediment samples collected

during the CERCLA STEP that meet these criteria. Sample X102 contained nine semi-volatile organic compounds and calcium at concentrations significantly above background. The possibility exists that these contaminants may be partially attributable to fuel combustion along Wyckles Road. Sample X105 contained concentrations of calcium and magnesium significantly above background. Groundwater samples G502 and G503 contained aluminum and lead at concentrations significantly above background concentrations. At groundwater sample point G102/ G103 benzene and chlorobenzene, as well as iron, lead, potassium, selenium, sodium, and thallium at concentrations significantly above background. Table 3-5 (Key Groundwater Samples) summarizes this information.

TABLE 3-2 SOIL/SEDIMENT SAMPLE SUMMARY

Decatur/Barding & Spawr Landfill ILD 984 766 378

	,		 		,			
Parametera	EBJD1 MEAQM0 X101	EBJD2 MEAQM1 X102	EBJD3 MEAQM2 X103 Dup. of X102	EBJD5 MEAQL2 X105	EBJD6 MEAQL3 X201 Background	EBJD7 MEAQL4 X202	EBJD8 MEAQL5 X203 Background	EBJD9 MEAQL6 X204
Parameters			_					
Volatiles	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Acetone	12 UJ			20 J			12 UJ	
Chlorobenzene Xylene (total)	12 U 12 U	. → 1,440 -	3 J				12 U 12 U	
Semi-volatiles	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Naphthalene	400 U				68 J		60 J	
2-Methylnaphthalene	400 U	18 - -		of our statement of the	66 J		62 J	\$2.000mm
Dimethylphthalate	400 U				430 U	_	410 U	-
Acenaphthylene	400 U	# 1			53 J	90 J	47 J	
Acenaphthene	400 U	190 J			430 U		410 U	
Dibenzofuran	400 U	83 J			430 U		410 U	
Fluorene	400 U	190 J	-		45 J	. 	410 U	
N-Nitrosodiphenylamine(1)	400 U	 :		160 J	430 U		410 U	
Phenanthrene	400 U	1300	160 J		510	210 J	370 J	52 J
Anthracene	400 U	350 J			120 J	83 J	91 J	
Fluoranthene	400 U	1400	280 J		960	520	710	91 J
Pyrene	400 U	1200	240 J	26 J	1000	700	790	77 J
Butylbenzylphthalate	400 U			1 4 <u>12</u> 1 144 4	430 U	van die ade	68 J	
Carbazole	400 U	140 J		-	55.1	. 4	410 U	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Benzo(a)anthracene	400 U	510 630	130 J 180 J		560 710	490 620	450 560	
Chrysene	400 U		100	200 J	/10 130 J			 78 J
bis(2-Ethylhexyl)phthalate	36 J 400 U	62 J 500	74 J 140 J	200 J	640	87 J 530	120 J 470	/8 J
Benzo(b)fluoranthene	400 U	440	120 J	35 J	540	530 590	420	
Benzo(k)fluoranthene	400 U	590	120 J	48 J	770	820 820	560	
Benzo(a)pyrene	400 U	อลก	150 J	50 J	120 J	720	510	
Indeno(1,2,3-cd)pyrene	400 U	650	190 J	60 J	820	930	620	1 -
Benzo(g,h,i)perylene	400 0	000	1903	00 3	020	330	020	
	<u> </u>			L	<u> </u>			

TABLE 3-2 (continued) SOIL/SEDIMENT SAMPLE SUMMARY

Decatur/Barding & Spawr Landfill ILD 984 766 378

								·
Parameters	EBJD1 MEAQM0 X101	EBJD2 MEAQM1 X102	EBJD3 MEAQM2 X103 Dup. of X102	EBJD5 MEAQL2 X105	EBJD6 MEAQL3 X201 Background	EBJD7 MEAQL4 X202	EBJD8 MEAQL5 X203 Background	EBJD9 MEAQL6 X204
Pesticides/PCBs .	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Heptachlor Epoxide		-		_		. Charle	3.2 J	grapher
Endosulfan I	2 U	3.9 J	3.3 J	-			8.1 J	
Dieldrin	4 U	-	<u> 1</u>	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7.2 J	
4,4'-DDT	4 U				6.7	99 DJ	22 J	· -
Gamma-Chlordane	2 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) × · ·		2.9 J	5.4	5:7	2.5
Alpha-Chlordane	2 U							3.7
4,4'-DDE	4 U		, <u>-</u>			6.7	3 3 11 11 11 11 11 11 11 11 11 11 11 11	
4,4'-DDD	4 U					9.4 J		
Endrin Aldehyde	* (P** '4 U	4.1 J	-			6.9 J	4.2 J	
Inorganics	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aluminum	14400	12400	12000	5600	5500	13800	8960	8910
Arsenic	7.9	7.5	6.8	2.6 B	2.7	7.2	4.7	31
Barium	67	128	115	34.8 B	58.9	126	103	276
Beryllium	0.68 B	0.67 B	0.67 B	0.49 B	0.45 B	0.82 B	0.65 B	0.6 B
Cadmium	0.23 U		-	- 1			0.41 B	
Calcium	2040	10500	5540	33900	9110	12900	12800	37800
Chromium	20.9	20.1	21.1	11.6	14.6	22.3	25.5	15.1
Cobalt	7.1 B	5.7 B	5.7 B	1.8 B	2.5 B	6.7 B	4.2 B	7.2 B
Copper	18.9	18.3	22.6	14.3	26.8	77.2	74.5	20.8
Cyanide	0.42 U	0.45 B		0.55 B				0.99
Iron	23700	30600	29300	18600			15800	67600
Lead	19.2	30.2	37.9	12.7	29.7	43.2	59.1	22
Magnesium	3840	7080	4630	18200	3880	6950	5120	8830
Manganese	451 21.1	136	124	149	303	594	395	1170
Nickel	,	17.7	17.5	14.2	13.6	21.7	20.3	15.7
Potassium	1910	2280	2270	1260 B	817 B	2080	1090 B	1900
Silver	0.47 U				720 5	475 0	0.5 B	
Sodium	207 B	226 B	213 B	281 B	720 B	475 B	197 B	324 B
Vanadium	29.2	29.4 82.3 E	27.3	13.4 B	11.9 B 81.2 E	28.3	18.3	20 127 E
Zinc	63 E	02.3 E	88.6 E	59.1 E	01.2 5	142 E	193 E	127 E
	l	l	1			I	L	

B,E, J Value is estimated

TABLE 3-3 GROUNDWATER SAMPLES Decatur/Barding & Spawr Landfill ILD 984 766 378

ug/L 0.8 J 5 U 5 U 1 U 1 U ug/L	ug/L	ug/L 	ug/L	ug/L 11 8 J 10 J 9 J 3 J	ug/L 9 J 10 3 J
1 U 5 U 5 U 1 U 1 U				8 J 10 J 9 J 3 J 3 J	 10 3 J
ug/L			i		
	ug/L	ug/L	ug/L	ug/L	ug/L
N.A. 5 U 5 U 5 U 5 U	N.A. 	N.A.		5 J 9 J (2 J)	4 J 9 J 2 J 4 J 1 J
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
80 U 1 U 125 87800 10 U 6 U 6 2730 2 U 41600	227 84 120000 - 8.1 1320 4 61000 85	282 84 120000 - 9.5 1350 4 61200 83	587 J 98 B 101 B 125000 2.2 B 359 121000 1650 92 B 3090 33.9 54300	129 B 11.9 B 250 100000 3.4 B 4.8 B 19900 3.2 50100 134 26.6 B 74100 45.6 77300 35.5	95.8 B 11.1 B 250 99600 2.6 B 4.2 B 19800 2.8 B 49600 128 23.5 B 74200 54.2 79200 39.3 28.4
Ξ.	1 U 125 87800 10 U 6 U 6 2730 2 U 41600 72 20 U 5000 U	1 U = 125 84 87800 120000 10 U = 6 8.1 2730 1320 2 U 4 41600 72 85 20 U = 5000 U = 5000	1 U	1 U	1 U = 9.8 B 11.9 B 125 84 84 101 B 250 87800 120000 120000 125000 100000 10 U - - 3.4 B 6 U - - 3.4 B 6 B.1 9.5 - - 2730 1320 1350 359 19900 2 U 4 4 - 3.2 41600 61000 61200 121000 50100 72 85 83 1650 134 20 U - 9.2 B 26.6 B 5000 U - 3090 74100 2 U - 33.9 45.6 15200 14200 13800 54300 77300

U Indicates that the compound was analyzed for, but not detected. The sample quantitation limit-corrected for dilution and percent moisture is reported.

J Indicates an estimated value. This flag is used either when estimating a concentration of a tentatively identified compound or when the data indicates the presence of a compound but the result is less than the sample quantitation limit, but greater than zero. The flag is also used to indicate a reported result having a QC problem.

B The reported value is less than the quantitation limit but greater than the detection limit.

N.A. Not Analyzed

TABLE 3-4 KEY SOIL/SEDIMENT SAMPLE SUMMARY Decatur/Barding & Spawr Landfill ILD 984 766 378

Parameters	EBJD1 MEAQM0 X101 Background	EBJD2 MEAQM1 X102	EBJD5 MEAQL2 X105
Semi-volatiles	ug/kg	ug/kg	ug/kg
Phenanthrene	400 U	1300	
Fluoranthene	400 U	1400	
Pyrene	400 U	1200	!
Benzo(a)anthracene	400 U	510	
Chrysene	400 U	630	
Benzo(b)fluoranthene	400 ·U	500	
Benzo(k)fluoranthene	400 U	440	
Benzo(a)pyrene	400 U	590	
Indeno(1,2,3-cd)pyrene	400 U		
Benzo(g,h,i)perylene	400 U	650	
Inorganics	mg/kg	mg/kg	mg/kg
Calcium	2040	10500	33900
Magnesium	3840		18200

TABLE 3-5 KEY GROUNDWATER SAMPLES Decatur/Barding & Spawr Landfill ILD 984 766 378

Parameters	97IE01S01 EBJB9 G501 Background	97IE01S02 EBJC0 G502	97IE01D01 EBJC4 G503 Dup. of G502	MEAQL7 EBJC5 G101	MEAQL8 EBJC6 G102	MEAQK5 EBJC8 G103 Dup. of G102
Volatiles	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Benzene Chlorobenzene	1 U 1 U		 	-	11	10
Inorganics	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum Iron Lead Manganese	80 U 2730 2 U 72	227 4	282 4	587 J 1650	19900 3.2	19800
Potassium Selinium Sodium	5000 U 2 U 15200	_ _	 	33.9 54300	74100 45.6 77300	74200 54.2 79200
Thallium	2 U				35.5	39.3

U Indicates that the compound was analyzed for, but not detected. The sample quantitation limit corrected for dilution and percent moisture is reported.

J Indicates an estimated value. This flag is used either when estimating a concentrationfor a tentatively identified compound or when the data indicates the presence of a compound but the result is less than the sample quantitation limit, but greater than zero. The flag is also used to indicate a reported result having a QC problem.

4.0 SOURCE CHARACTERIZATION

4.1 INTRODUCTION

This section briefly discussed the hazardous waste source that has been identified during the CERCLA site investigations.

4.2 LANDFILL

Landfilling activities at the site began in the mid-1950s and continued until the late 1960s.

During this time, the site was used for landfilling industrial and municipal wastes. Because operations occurred prior to strict regulation, there are no records concerning specific wastes deposited at the site, nor the area utilized for filling activities. Past environmental investigations indicate that approximately 30 of the existing 64 acres were filled.

No type of liner is known to exist at the site, and no runoff/runon controls are in place. Leachate streams have been documented leaving the site.

During the STEP investigation various semi-volatile organic compounds were detected, particularly on the eastern border of the site. Groundwater samples collected onsite revealed low concentrations of benzene and chlorobenzene, as well as various inorganic, naturally-occurring constituents. During the Screening Site Inspection of 1993, the soil was found to contain pesticides and five inorganics above background levels.

5.0 MIGRATION/EXPOSURE PATHWAYS

5.1 INTRODUCTION

The CERCLA Site Assessment Program identifies three migration pathways and one exposure pathway by which hazardous substances may pose a threat to human health and/or the environment. Consequently, sites are evaluated based on their known or potential impact on these four pathways. The pathways evaluated are groundwater migration, surface water migration, soil exposure, and air migration.

This section presents and discusses information collected during the CERCLA Site Team

Evaluation Prioritization of the Decatur/Barding & Spawr Landfill site. This information,
together with information documented in other sources, will be utilized in analyzing the site's
impact on the four pathways and the various human and environmental targets with the
established target distance limits.

Discussions of the pathways will include pathway descriptions; contaminant sources; and targets, such as human populations, fisheries, endangered species, wetlands and other sensitive environments.

5.2 GROUNDWATER

Regional geological information suggests that the area consists of overburden composed of loess (silt), loamy and sandy till, and laterally discontinuous silty clay and clay till. Underlying these

units, Pennsylvanian shale is expected with interbedded sandstone, limestone, and coal. The Pennsylvanian bedrock can only produce small quantities of groundwater. Site-specific geological information is not available. Shallow groundwater flow is believed to flow to the south-southeast toward the Sangamon River.

There are no known public water supply wells located within four miles of the site. Residents of Decatur obtain drinking water from Lake Decatur, and Harristown residents obtain water from their own municipal wells, which are located beyond the 4-mile radius of the site. Rural residents within 4 miles of the site utilize groundwater drawn from the glacial drift. The nearest known private well is located at the Standard Waste office (although not used for drinking). Others are located in the residential area just to the northwest of the site. Table 5-1 shows the estimated population within each distance ring utilizing groundwater as a potable source.

TABLE 5-1
ESTIMATED POPULATION UTILIZING GROUNDWATER

Distance From Site	Estimated Population
0 - 1/4 mile	77
1/4 - ½ mile	125
½ - 1 mile	618
1 - 2 miles	1,599
2 - 3 miles	2,923
3 - 4 miles	1,183

Past sampling of the Standard Waste well indicated an elevated concentration of copper (96.6 ppb). Groundwater samples collected from the landfill area itself show the presence of low concentrations of volatile and semi-volatile organic compounds, and aluminum, iron, lead, potassium, selenium, sodium, and thallium were found at concentrations significantly above the background concentrations. Only selenium and thallium were found at concentrations exceeding the Maximum Contaminant Level (MCL), which is the maximum allowable concentration in a public drinking water supply. Benzene, antimony, iron, manganese, selenium and thallium were detected at concentrations exceeding the IEPA's groundwater corrective action objectives (see section 6.2 for more detailed information).

5.3 SURFACE WATER

Runoff from the site enters the Sangamon River, either directly or via roadside drainage ditches. The river flows along the southern border of both the sanitary district facility and the site. The 15-mile surface water route continues for its full length along the Sangamon River, ending in a rural area of Sangamon County. The river has an average discharge of approximately 641 ft³/s (at south edge of Decatur, 1.2 miles downstream from dam), according to U.S. Geological Survey Water Data Report IL-89-2.

No known drinking water intakes exist along the surface water pathway. The Sangamon River is considered to be fishery, but no sensitive environments, other than wetlands exist along the pathway. Wetlands do exist along the river bottomland, both onsite and downstream. According to the National Wetland Inventory Wetland maps, approximately 15.5 miles of wetland frontage

(primarily palustrine, broad-leaved deciduous forest) exist along the surface water path.

Sample X202, collected from the bank of the river along the southern boundary of the site, contained various semi-volatile organic compounds, pesticides, and inorganic compounds.

Sample X204, collected from the bottomland wetland area contained low concentrations of semi-volatile organic compounds, two pesticides, and various inorganic constituents.

Although the downstream sediment samples did not contain concentrations significantly above background, several analytes were found to exceed TACO objectives or other ecological benchmarks. See Section 6.3 for more detailed information concerning the comparison of sediment sample concentrations to various benchmarks.

5.4 SOIL EXPOSURE

Because of the years of operation of the landfill, the site never underwent closure. During site visits the site was found to be well vegetated with tall grasses and in some areas, trees. However, due to erosion and leachate seepage, a few areas of exposed soil are present. Site access is not restricted by any physical means, though its location does not lend itself to passersby or recreational use. It is estimated that 77 people reside within 1/4 mile of the site, and a total of 49,163 reside within 4 miles of the site.

Soil samples collected from the site revealed the presence of semi-volatile organic compounds, pesticides, and various inorganic constituents. Sample X102 contained benzo(a)pyrene at a

concentration exceeding the Cancer Risk value of 0.088 ppm, as listed in the Superfund Chemical Data Matrix (SCDM). None of the soil sample organic compound concentrations exceeded IEPA's TACO objectives. The inorganic compounds could not be compared to TACO objectives, since the pH of the samples is not known.

5.5 AIR PATHWAY

No air samples have been collected, and no releases to the air pathway have been documented. The presence of vegetation over the majority of the site should minimize the likelihood of windblown contaminants leaving the site. Approximately 77 residences are located within 1/4 mile of the site.

6.0 ADDITIONAL RISK-BASED OBJECTIVES

Three forms of screening objectives were used to perform a site specific risk-based assessment of the site: IEPA's Tiered Approach to Corrective Action Objectives (TACO), Ontario Aquatic Sediment Quality Guidelines, and U.S. EPA Ecotox Thresholds. These objectives have not been used to assess the site for CERCLA purposes, but rather to provide insight into how the site would be evaluated under these non-CERCLA criteria. It should be noted that TACO objectives, Ontario guidelines, and Ecotox thresholds have not been established for all analytes on the Target Compound List (nor tentatively identified compounds). Therefore, any risk posed by such contaminants can not be evaluated at this time.

6.1 TACO SOIL OBJECTIVES

Tier 1 of TACO contains a set of objective values that are based on simple numeric models. Each set of values is specific to the intended use of the property: residential or industrial/commercial. The values for soil objectives are specific to three exposure routes: ingestion, inhalation, and migration to groundwater.

None of the soil samples collected during the CERCLA STEP nor the 1994 CERCLA Site Inspection Prioritization (SIP) contained organic contaminant concentrations above the TACO objectives. However, four of the organic compounds do not have established TACO objectives. The inorganic contaminant concentrations can not be compared to the TACO objectives because the pH of the samples is unknown.

6.2 TACO GROUNDWATER OBJECTIVES

Because groundwater in the vicinity of the site is used as a potable source, contaminant concentrations are compared to Class I groundwater objectives. One organic compound and five inorganic compounds were found at concentrations above the TACO groundwater objectives.

Refer to Table 6-1 for the comparison of sample data to the TACO objectives. None of the groundwater samples collected during the 1994 CERCLA SIP exceeded TACO groundwater objectives.

6.3 SEDIMENT BENCHMARKS

The sediment samples collected during the STEP sampling event were compared to ecological benchmarks to help determine whether site activities have impacted the surface water pathway. Two sources of benchmarks were used for this comparison: Ontario sediment quality guidelines and U.S. EPA ecotox thresholds. Ontario sediment quality guidelines are non-regulatory ecological benchmark values that serve as indicators of potential aquatic impacts. Levels of contaminants below Ontario benchmarks indicate a level of pollution which has no effect on the majority of the sediment-dwelling organisms. Contaminants for which no Ontario benchmarks were available were compared to U.S. EPA ecotox thresholds. Ecotox thresholds are ecological benchmarks above which there is sufficient concern regarding adverse ecological effects to warrant further site investigation. Ecotox thresholds are to be used for screening purposes and are not regulatory criteria, site-specific cleanup standards, or remediation goals.

Of the sediment samples collected during the STEP, two organic and two inorganic compounds

were found to exceed the Ontario guidelines. Refer to Table 6-2 for the comparison of STEP sample data to these benchmarks. No river sediment samples were collected during the CERCLA SIP, so no values were compared to sediment benchmarks.

TABLE 6-1 TACO GROUNDWATER OBJECTIVES Decatur/Barding & Spawr Landfill ILD 984 766 378

Parameters	TACO Groundwater Objective	97IE01S01 EBJB9 G501 Background	97IE01S02 EBJC0 G502	97IE01D01 EBJC4 G503 Dup. of G502	MEAQL7 EBJC5 G101	MEAQL8 EBJC6 G102	MEAQK5 EBJC8 G103 Dup. of G102
Volatiles	ug/£	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
2-Butanone Benzene 4-Methyl-2-pentanone 2-Hexanone Chlorobenzene Xylene (total) 1,1,2,2-Tetrachloroethane	25 25 25 25 25 25 25 25 25 25 25 25 25 2	0.8 J 1. U 5 U 5 U 1 U 1 U				- 11 8 J 10 J 9 J 3 J 3 J	9 J 10 3 J
Semi-volatiles 1,4-Dichlorobenzene Naphthalene Diethylphthalate N-Nitrosodiphenylamine (1) Di-n-butylphthalate	1901 75 75 560 10 8	ug/L 5 U 5 U 5 U 5 U	ug/L	ug/L - 	ug/L - - - - -	ug/L 5 J 9 J 2 J	ug/L 4 J 9 J 2 J 4 J 1 J
Inorganics		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aluminum Antimony Barium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selinium Thallium Zinc	MA 6 2000 1000 1000 1000 5 000 5 000 5 000 5 000 5 000 5 000	80 U 11 U 125 87800 10 U 6 U 6 2730 2 U 41600 72 20 U 5000 U 15200 2 U 15200	227 84 120000 - 8.1 1320 4 61000 85	282 84 120000 9.5 1350 4 -61200 83 13800	587 J 9.8 B 101 B 125000 2.2 B 359 121000 1650 9.2 B 3090 33.9 54300	129 B 11.9 B 250 100000 3.4 B 4.8 B 19900 3.2 50100 134 26.6 B 74100 45.6 77300 35.5 35.1	95.8 B 11.1 B 250 99600 2.6 B 4.2 B 19800 2.8 B 49600 128 23.5 B 74200 54.2 79200 39.3 28.4

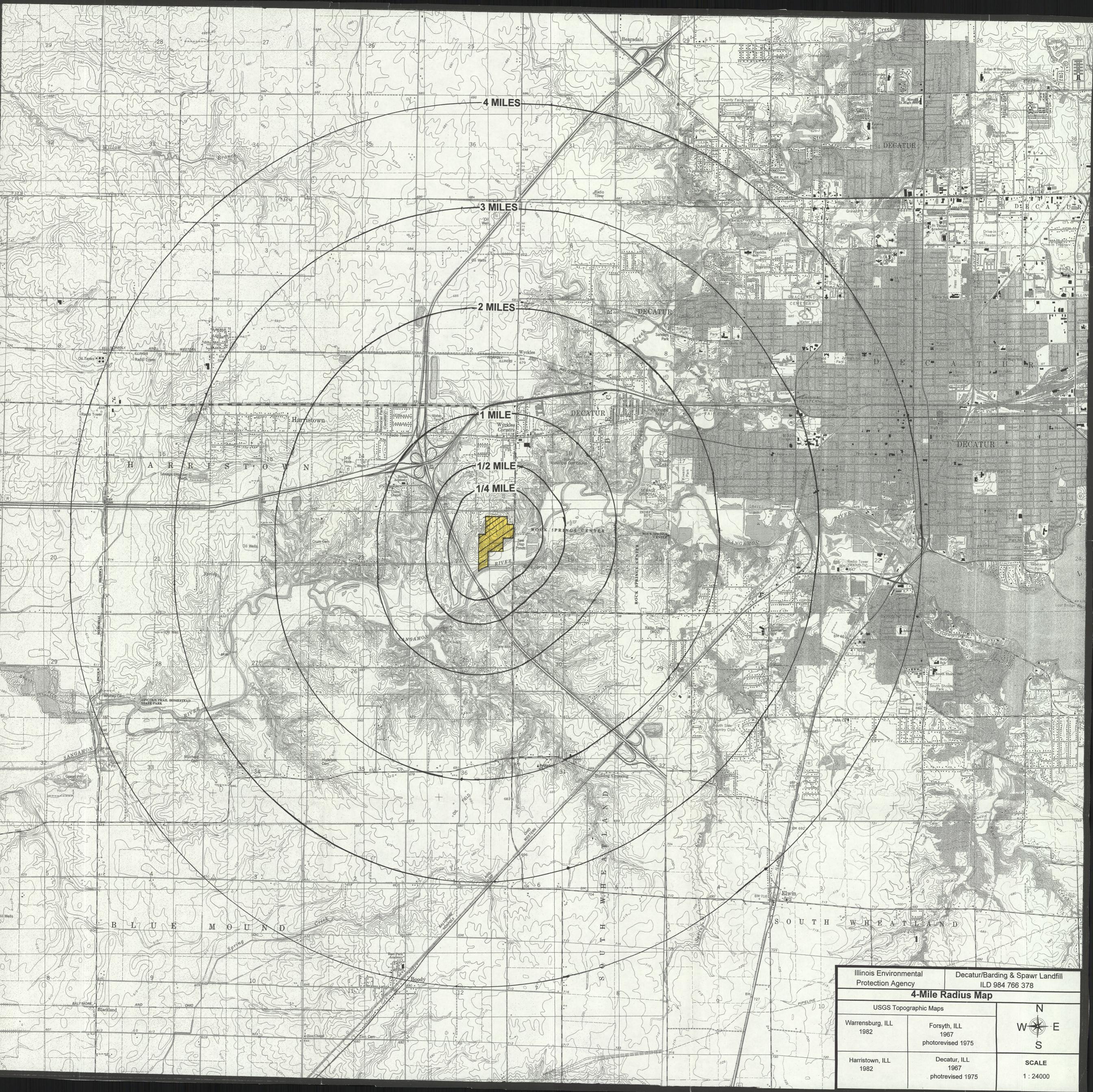
U Indicates that the compound was analyzed for, but not detected. The sample quantitation limit corrected for dilution and percent moisture is reported.

Concentrations in red/bold exceed TACO objective

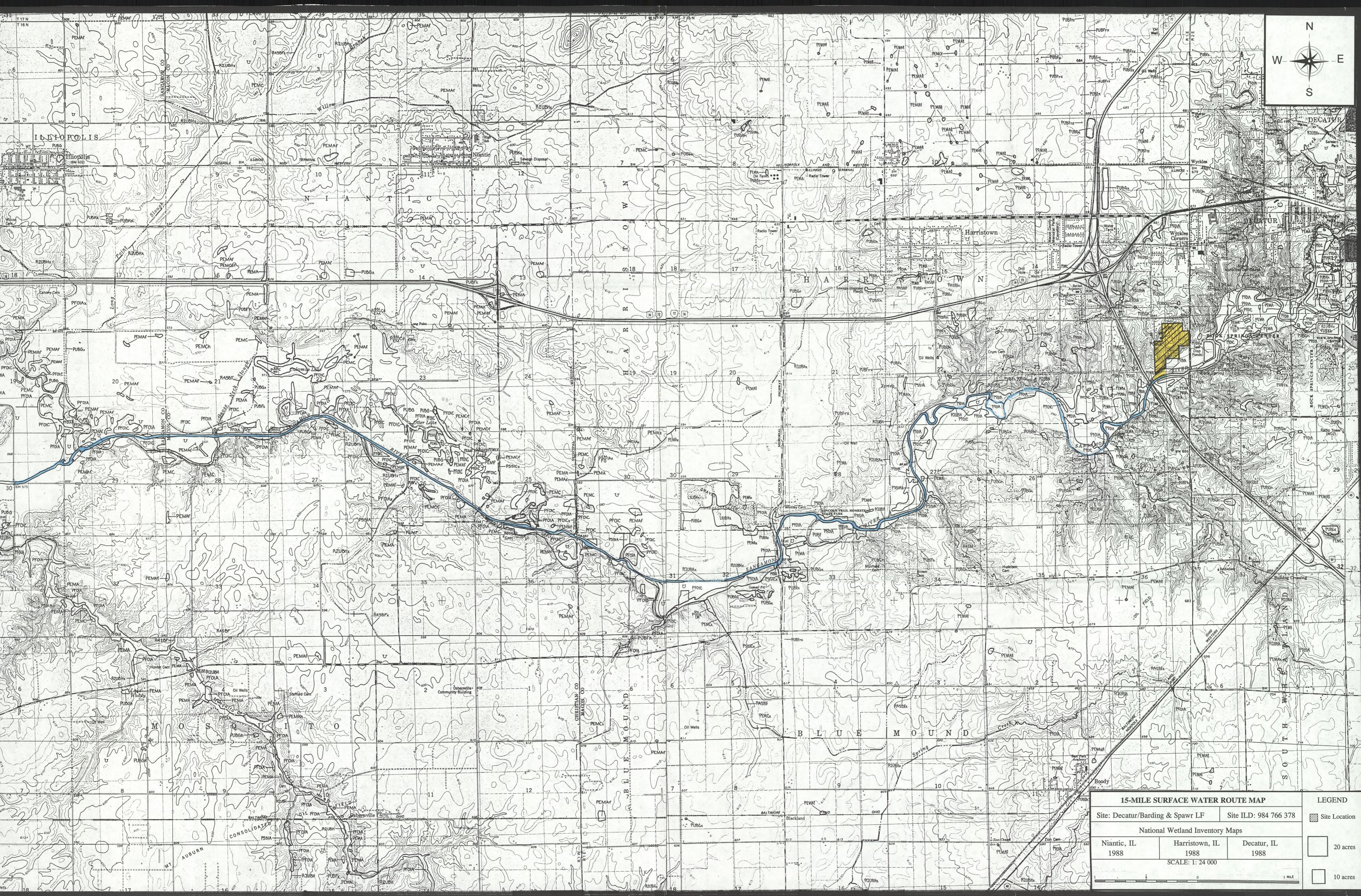
J Indicates an estimated value. This flag is used either when estimating a concentration for a tentatively identified compound or when the data indicates the presence of a compound but the result is less than the sample quantitation limit, but greater than zero. The flag is also used to indicate a reported result having a QC problem.

B The reported value is less than the quantitation limit but greater than the detection limit.

NA Not Available, Objective not established


TABLE 6-2 COMPARISON OF SEDIMENT SAMPLES TO BENCHMARKS Decatur/Barding & Spawr Landfill

	10.10.000				
Parameters	Sediment Benchmark	EBJD6 MEAQL3 X201 Background	EBJD7 MEAQL4 X202	EBJD8 MEAQL5 X203 Background	EBJD9 MEAQL6 X204
Volatiles None Detected	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Semi-volatiles	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Naphthalene 2-Methylnaphthalene Acenaphthylene Fluorene	8,515.8	68 J 66 J 53 J 45 J	90 J	60 J 62 J 47 J 410 U	
Phenanthrene Anthracene Fluoranthene Pyrene	55 ≥ 26 8	510 120 J 960 1000	210 J 83 J 520	370 J 91 J 710 790	52 J - 91 J 77 J
Butylbenzylphthalate Carbazole Benzo(a)anthracene Chrysene	1000 2007 2007	430 U 55 J 560 710	 490 620	68 J 410 U 450 560	
bis(2-Ethylhexyl)phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	9538	130 J 640 — 540 770	87 J - 530 590 - 820	120 J 470 420 560	78 J
Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	25 25 1	120 J 820	720 930	510 620:	
Pesticides/PCBs	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Heptachlor Epoxide Endosulfan I Dieldrin 4.4'-DDT	20 20 10 10	6.7	99 DJ	8.1 J 7.2 J 22 J	
Gamma-Chlordane Alpha-Chlordane 4,4'-DDE	\$ <u>\$</u> .0	2.9-J	5.4	5.7	2.5 3.7
4,4'-DDD Endrin Aldehyde	÷		9.4 J 6.9 J	 	
Inorganics		mg/kg	mg/kg	mg/kg	mg/kg
Aluminum Arsenic Barium	5 S	5500 2.7 58.9	13800 7.2 126	8960 4.7 103	8910 31 276
Beryllium Cadmium Calcium	55 75 75 75 75	0.45 B 9110	0.82 B 	0.65 B 0.41 B 12800	0.6 B - 37800
Chromium Cobalt Copper	50 16	14.6 2.5 B 26.8	22.3 6.7 B 	25.5 4.2 B 74.5	15.1 7.2 B 20.8
Cyanide Iron Lead	14 0/1 20000 131 NA	10700 29.7	22600 43.2	15800 59.1	0.99 67600 22
Magnesium Manganese Nickel Potassium	NA 460 16 NA	3880 303 313.6 817 B	6950 594 21.7 2080	5120 395 20.3 1090 B	8830 1170 15.7 1900
Sliver Sodium Vanadium	NA NA NA	720 B 11.9 B	475 B 28.3	0.5 B 197 B 18.3	324 B 20
Zinc	120	81.2 E	142 E	193 E	127 E


B.E. J Value is estimated

NA Not Available - Benchmark not established Concentrations in Red/Bold exceed benchmark

APPENDIX A 4-MILE RADIUS MAP

APPENDIX B 15-MILE SURFACE WATER ROUTE MAP

APPENDIX C STEP PHOTOGRAPHS

¥ .

DATE: 11-13-96 ILD: 1158040012 COUNTY: Macon

TIME: 9:15 am SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
Northwest

Duplicate sample

location X102/X103

Collected from

east side of land-

fill along Wyckles

Road.

DATE: 11-13-96

TIME: 9:15 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
West

Location of

duplicate samples

X102/X103.

DATE: 11-13-96 ILD: 1158040012 COUNTY: Macon

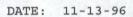
TIME: 11:15 am SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
East

Sample X105,

collected from


bottom of leachate

seep located on

east side of land-

fill.

TIME: 11:15 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: Northeast

Sample location

X105.

DATE: 11-13-96

ILD: 1158040012 COUNTY: Macon

TIME: 11:15 am

SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: West

Sample location

X105.

DATE: 11-13-96

TIME: 1:45 pm

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: Southeast

Sample X202

collected from the

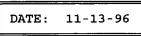
north side of

Sangamon River

at south border

of site.

DATE: 11-13-96 ILD: 1158040012 COUNTY: Macon


TIME: 1:45 pm SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
West

Sample location

X202.

TIME: 1:45 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
West

Sample location

X202.

DATE: 11-13-96 ILD: 1158040012 COUNTY: Macon

TIME: 2:00 pm | SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
North

Sample X204

collected from

a dry ditch near

southwest corner

of sanitary dist.

facility.

DATE: 11-13-96

TIME: 2:00 pm

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture

taken toward: South

Sample location

X204.

DATE: 11-13-96 ILD: 1158040012 COUNTY:

TIME: 2:30 pm SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
Northeast

Sample G101

collected with

GEOPROBE near

southern edge of

site.

DATE: 11-13-96

TIME: 2:30 pm

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: East

Sample point

G101.

DATE: 11-13-96

ILD: 1158040012 COUNTY: Macon

TIME: 3:45 pm

SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
Southeast

Sample point X201

located on north

bank of Sangamon

River, just east

of Wyckles Road.

DATE:

TIME:

PHOTOGRAPH TAKEN BY:

COMMENTS: Picture taken toward:

No Photo

DATE: 11-13-96

ILD: 1158040012 COUNTY: Macon

TIME: 4:00 pm

SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
Southeast

Sample point X203


located near

north bank of

Sangamon River, on

east side of

Wyckles Road.

DATE: 11-13-96

TIME: 4:00 pm

PHOTOGRAPH TAKEN BY: Judy Triller

COMMENTS: Picture taken toward: Northwest

Sample point X203.

DATE: 11-14-96 ILD: 1158040012 COUNTY: Macon

TIME: 8:40 am | SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
West

Sample X101 col-

lected from east

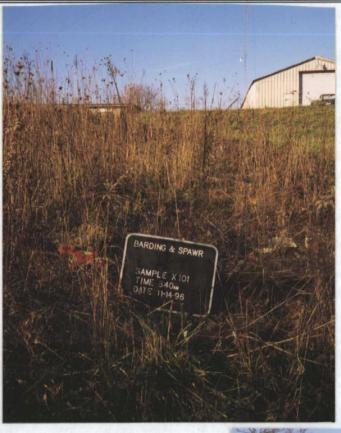
side of Wyckles

Rd. across from

Standard Waste

office.

DATE: 11-14-96


TIME: 8:40 am

PHOTOGRAPH TAKEN

BY: J. Triller

COMMENTS: Picture taken toward: Northwest

Sample point X101.

DATE: 11-14-96

ILD: 1158040012 COUNTY: Macon

TIME: 10:00 am

SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
North

Duplicate samples

G502/G503 collect-

ed from residence

on Bowsher Road,

northwest of

landfill.

DATE: 11-14-96

TIME: 10:00 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: Northwest

Duplicate samples

G502/G503.

DATE: 11-14-96 ILD: 1158040012 COUNTY: Macon

TIME: 11:00 am | SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
North

Sample point G501

collected from

Conservation

office, southeast

of site.

DATE: 11-14-96

TIME: 11:00 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
Northwest

Sample point G501.

DATE: 11-14-96

ILD: 1158040012 COUNTY: Macon

TIME: 10:45 am

SITE NAME: Decatur/Barding & Spawr Landfill

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward:
East

Duplicate samples

G102/G103 collect-

ed with GEOPROBE

near center of

site.

DATE: 11-14-96

TIME: 10:45 am

PHOTOGRAPH TAKEN BY: J. Triller

COMMENTS: Picture taken toward: Southwest

Duplicate samples

G102/G103.

APPENDIX D TARGET COMPOUND LIST

Target Compound List

Volatiles

Chloromethane Bromomethane Vinyl Chloride Chloroethane

Methylene Chloride

Acetone

Carbon Disulfide 1.1-Dichloroethene 1,1-Dichloroethane

1,2-Dichloroethene (total)

Chloroform

1.2-Dichloroethane

2-Butanone

1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1.2-Dichloropropane Cis-1,3-Dichloropropene

Trichloroethene

Dibromochloromethane 1,1,2-Trichloroethane

Benzene

trans-1,3-Dichloropropane

Bromoform

4-Methyl-2-pentanone

2-Hexanone

Tetrachloroethene

Toluene

1,1,2,2-Tetrachloroethane

Chlorobenzene Ethyl benzene

Styrene

Xylenes (total)

Source:

Target Compound List for water and soil with low or medium levels of volatile and semivolatile organic contaminants, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, September 27, 1991.

Target Compound List (Continued)

Pesticide/PCB

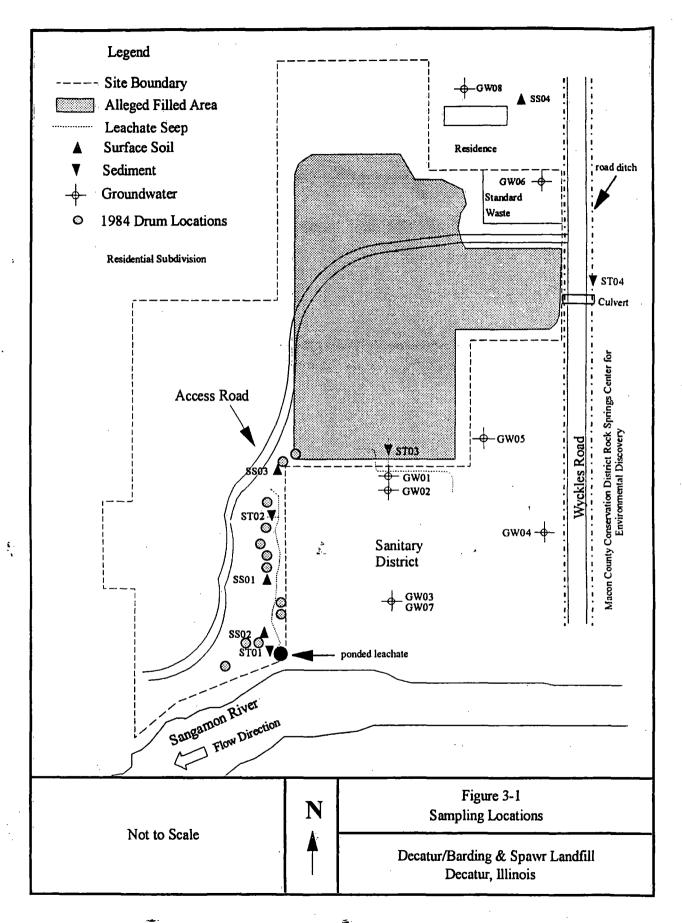
4.4-DDT alpha-BHC Methoxychlor beta-BHC delta-BHC Endrin ketone Endrin aldehvde gamma-BHC (Lindane) Heptachlor alpha-chlordane Aldrin gamma-chlordane Toxaphene Heptachlor epoxide Endosulfan I Aroclor-1016 Aroclor-1221 Dieldrin Aroclor-1232 4.4-DDE Aroclor-1242 Endrin Endosulfan II Aroclor-1248 4,4-DDD Aroclor-1254 Endosulfan sulfate Aroclor-1260

Source:

Target Compound List for water and soil containing less than high concentrations of pesticides/aroclors, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment

Program, September 27, 1991.

Target Analyte List


Aluminum Magnesium Antimony Manganese Arsenic Mercury Barium Nickel Bervllium Potassium Cadmium Selenium Calcium Silver Chromium Sodium Cobalt Thallium Vanadium Copper Iron Zinc Lead Cyanide

Source:

Target Analyte List in the Quality Assurance Project Plan for

Region V Superfund Site Assessment Program, September 27, 1991.

APPENDIX E 1994 CERCLA SIP SAMPLE RESULTS

Table 3-1 Decatur/Barding & Spawr Landfill Sample Descriptions						
Sample	Depth Units	Appearance	Location			
GW01	37.5 feet	Clear, odorless	Sanitary District monitoring well G102D			
GW02	11.6 feet	Slightly brown, odorless	Sanitary District monitoring well G102S			
GW03	28.4 feet	Clear, odorless	Sanitary District monitoring well G103			
GW04	42.5 feet	Clear, odorless	Sanitary District monitoring well G104			
GW05	51.7 feet	Clear, odorless	Sanitary District monitoring well G101D			
GW06	40 feet	Clear, odorless	Standard Waste Facility Well			
GW07	28.4 feet	Clear, odorless	Sanitary District monitoring well G103, duplicate of GW03			
GW08	unknown	Clear, hydrogen sulfide odor	Private well; selected to represent background groundwater conditions			
ST01	2 - 6 inches	Reddish-brown clay	In a leachate channel about forty feet west of the Sanitary District, 200 feet north of the Sangamon River			
ST02	2 - 6 inches	Reddish-brown clay	In a leachate channel about thirty feet west of the Sanitary District, 800 feet north of the Sangamon River			
ST03	2 - 6 inches	Black silty muck	In a leachate channel about fifty feet north of GW01 and GW02.			

Appendix D

Decatur/Barding & Spawr Landfill

Analytical Results

	Data Qualifiers					
Analysis	Qualifier	Description				
Organic	U	Compound was analyzed but not detected. The associated numerical value is the sample quantitation limit.				
	J	An estimated value. This flag is used either when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria with the result less than the sample quantitation limit but greater than zero.				
	В	Reported value is less than the CRQL, but greater than the instrument detection limit.				
	N	Indicates presumptive evidence of a compound. This flag is used only for TICs.				
	A	Indicates that a TIC is a suspected aldol-condensation product.				
	P	Indicates there is greater than 25 percent difference for detected concentrations between two gas chromatograph columns in pesticide/Arochlor analysis. The lower of the two values is flagged.				
Inorganic	U	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.				
	J	An estimated value.				
	В	The reported value is less than the CRDL, but greater than or equal to the IDL.				
	N	Spiked sample recovery not within control limits.				
	W	Post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50 percent of spike absorbance.				
	*	Duplicate analysis not within control limits.				
	+	Correlation coefficient for the method of standard additions (MSA) is less than 0.995.				
	<u> </u>	The reported value was determined by the MSA.				

Volatile Organic Analysis for Groundwater Samples							
		<u>Decatu</u>	r/Barding & Spa	wr Landfill			
			Sample	Locations and N	umber		
Volatile			Con	centrations in ug	/L		
Compound	GW01	GW02	GW03	GW04	GW05	GW06	GWO8
							Background
Chlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	10 U	10 U	10 U	IO U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylene (total)							
Total Number of TICS *	0	0	<u> </u>	0	0	0	0

^{*} Number, not concentrations, of tentatively identified compounds (TICs).

v-volat

D-5

Semi-volatile Organic Analysis for Groundwater Samples Decatur/Barding & Spawr Landfill

	Sample Location and Number							
Semi-volatile			Coi	ncentrations in up	/L			
Compound	GW01	GW02	GW03	GW04	GW05	GW06	GW08	
•							Background	
Phenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
bis(2-Chloroethyl)Ether	10 U	10 U	10 U	10 U	10 U	10 U	IQ U	
2-Chlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
1,3-Dichlorobenzene	Ĩ0 N	10 U	10 U	10 U	10 U	10 U	10 U	
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
1,2-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2-Methylphenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2,2'-oxybis(1-Chloropropane)	10 UJ	10 U	10 UJ	10 UJ	10 UJ	10 U	10 U	
4-Methylphenol	10 U	10 U	10 Ü	10 U	10 U	10 U	10 U	
n-Nitroso-Di-n-Propylamine	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Hexachloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Nitrobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Isophorone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2-Nitrophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2,4-Dimethylphenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
bis(2-Chloroethoxy)Methane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2,4-Dichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Naphthalene	10 U	10 U	<u>10 U</u>	10 U	10 U	10 U	10 U	
4-Chloroaniline	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
4-Chloro-3-Methylphenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2-Methylnaphthalene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Hexachlorocyclopentadiene	10 U	10 UJ	10 U	10 U	10 U	10 U	10 UJ	
2,4,6-Trichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
2,4,5-Trichlorophenol	25 U	25 U	25 U	25 U	25 U	25 Ü	25 U	

Semi-volatile Organic Analysis for Groundwater Samples Decatur/Barding & Spawr Landfill

	Sample Location and Number								
Semi-volatile	Concentrations in ug/L								
Compound	GWO1	GW02	GW03	GW04	GW05	GW06	GW08		
							Background		
Butylbenzylphthalate	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
3,3'-Dichlorobenzidine	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 U	10 UJ		
Benzo(a)Anthracene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Chrysene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
bis(2-Ethylhexyl)Phthalate	10 UJB	10 UJB	10 UJB	10 UJB	10 UJB	10 UJB	10 U		
di-n-Octyl Phthalate	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Benzo(b)Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Benzo(k)Fluoranthene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Benzo(a)Pyrene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Indeno(1,2,3-cd)Pyrene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Dibenzo(a,h)Anthracene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Benzo(g,h,i)Perylene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Total Number of TICs *	0	16	2	2	1	1	4		

* Number, not concentration, of tentatively identified compounds (TICs).

v-cemiv

D-S

C)
ī.	
_	۵
_	٠

Pesticide/PCB Analysis for Groundwater Samples								
Decatur/Barding & Spawr Landfill								
Sample Locations and Number								
Pesticide/			Coi	ncentrations in up	e/L			
PCB	GW01	GW02	GW03	GW04	GW05	GW06	GW08	
							Background	
Alpha-BHC	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Beta-BHC	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Delta-BHC	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Gamma-BHC (Lindane)	0.050 U	0.11 P	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Heptachlor	0.050 Ü	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Aldrin	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 ÚJ	
Heptachlor Epoxide	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Endolsulfan I	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	0.050 UJ	
Dieldrin	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 ÜJ	0.10 UJ	
4,4'-DDE	0.10 U	0.10 Ü	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
Endrin	0 10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
Endosulfan II	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
4,4'-DDD	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
Endosulfan Sulfate	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
4,4'-DDT	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	0.10 UJ	
Methoxychlor	0.50 U	0.50 U.	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	
Endrin Ketone	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	
Endrin Aldehyde	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ	
Alpha-Chlordane	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	.0.050 U	0.050 UJ	
Gamma-Chlordane	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 UJ	
Toxaphene	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	
Aroclor-1016	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	
Aroclor-1221	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	
Aroclor-1232	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	
Aroclor-1242	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	
Aroclor-1248	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	
Aroclor-1254	1.0 U	1.0 U	1.0 U.	1.0 U	1.0 U	1.0 U	1.0 UJ	
Aroclor-1960	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	

gwpest

Volatile Organic Analysis for Sediment Samples						
	catur/Barding & S	pawr Landfill	·			
			ons and Number			
Volatile			ons in ug/kg			
Compound	ST01	ST02	ST03	ST04		
 				Background		
Chloromethane	12 U	14 U	24 U	43 U		
Bromomethane	12 U	14 U	24 U	43 U		
Vinyl Chloride	12 U	14 U	24 U	43 U		
Chloroethane	12 UJ	14 UJ	24 UJ	43 UJ		
Methylene Chloride	5 J	14 U	24 U	43 U		
Acetone	12 UJB	25 UJB	35 UJ	200 ЈВ		
Carbon Disulfide	12 U	14 U	24 U	43 U_		
1,1-Dichloroethene	12 U	14 U	24 U	43 U		
1,1-Dichloroethane	12 U	14 U	24 U	43 U		
1,2-Dichloroethene (total)	12 U	14 U	24 U	43 U		
Chloroform	12 U	14 U	24 U	43 U		
1,2-Dichloroethane	12 U	14 U	24 U	43 U		
2-Butanone	12 U	14 U	6 J	56		
1,1,1-Trichloroethane	12 U	14 U	24 U	43 U		
Carbon Tetrachloride	12 U	14 U	24 U	43 U		
Bromodichloromethane	12 U	14 U	24 U	43 U		
1,2-Dichloropropane	12 U	14 U	24 U	43 U		
cis-1,3-Dichloropropene	12 U	14 U	24 U	43 U		
Trichloroethene	12 U	14 U	24 U	43 U		
Dibromochloromethane	12 U	14 U	24 U	43 U		
1,1,2-Trichloroethane	i2 U	14 U	24 U	43 U		
Benzene	12 U	2 J	24 U	43 U		
trans-1,3-Dichloropropene	12 U	14 U	24 U	43 U		
Bromoform	12 U	14 U	24 U	43 U		
4-Methyl-2-Pentanone	12 U	14 U	24 U	43 UJ		
2-Hexanone	12 UJ	14 UJ	24 UJ	43 UJ		
Tetrachloroethene	12 U	14 U	24 U	43 UJ		
1,1,2,2-Tetrachloroethane	12 U	14 U	24 U	43 UJ		
Toluene	12 U	14 U	24 U	43 UJ		
Chlorobenzene	12 U	14 U	24 U	43 UJ		
Ethylbenzene	12 U	14 U	24 U	43 UJ		
Styrene	12 U	14 U	24 U	43 UJ		
Xylene (total)	12 U	14 U	24 U	43 UJ		
TO A LALL A COTTON +						

* Number, not concentrations, of tentatively identified compounds (TICs).

sed-vo

Semi-volatile Organic Analysis for Sediment Samples Decatur/Barding & Spawr Landfill

		Sample Location and Number					
Semi-volatile		Concentrat	ions in ug/kg				
Compound	ST01	ST02	ST03	ST04			
				Background			
Hexachlorobenzene	390 U	450 U	800 U	1400 U			
Pentachlorophenol	940 UJ	1100 UJ	2000 UJ	3500 UJ			
Phenanthrene	390 U	450 U	150 J	210 J			
Anthracene	390 U	450 U	800 U	1400 U			
Carbazole	390 U	450 U	800 U	1400 U			
di-n-Butylphthalate	390 U	450 U	800 U	1400 U			
Fluoranthene	390 U	450 U	230 J	340 J			
Pyrene	390 U	450 U	150 J	220 J			
Butylbenzylphthalate	390 U	450 U	800 U	1400 U			
3,3'-Dichlorobenzidine	390 ป	_450 U	800 U	1400 U			
Benzo(a)Anthracene	390 U	450 U	67 J	120 J			
Chrysene	390 U	450 U	90 J	150 J			
bis(2-Ethylhexyl)Phthalate	390 UJB	450 UJB	800 A1B	1400 UJB			
di-n-Octyl Phthalate	390 U	450 U	_ 800 U	1400 U			
Benzo(b)Fluoranthene	390 U	450 U	800 U	230 J			
Benzo(k)Fluoranthene	390 U	450 U	800 U	1400 U			
Benzo(a)Pyrene	390 U	450 U	800 U	1400 U			
Indeno(1,2,3-cd)Pyrene	390 U	450 U	800 U	1400 U			
Dibenzo(a,h)Anthracene	390 U	450 U	800 U	1400 U			
Benzo(g,h,i)Perylene	390 U	450 U	800 U	1400 U			
Total Number of TICs	8	18	20	21			

sedim-s

* · · · · · · · · · · · · · · · · · · ·	:	jų.
Semi-volatile Org	ganic Analysis for Sedimer	t Samples
Tentativ	vely Identified Compounds	 S
Decatur	/Barding & Spawr Landfil	i
Co	ncentrations in ug/kg	
	Retention	E
Compound Name	Time	Co

Cor	Concentrations in ug/kg						
	Retention	Estimated					
Compound Name	Time	Concentration					
Sam	ple ST03 (Continued)						
Unknown Alkane	30.20	770 J					
Unknown	31.60	690 J					
Unknown	31.84	410 J					
Sam	ole ST04 Background						
2-Pentanone, 4-hydroxy-4-met	5.08	25000 UJNBA					
Acetic acid, octyl ester	11.60	800 JN					
Butanoic acid, octyl ester	13.86	2700 JN					
Tetradecanoic acid	18.44	1000 JN					
9-Hexadecenoic acid	19.56	6700 JN					
Unknown hydrocarbon	19.62	2500 J					
Hexadecanoic acid	19.71	8700 JN					
Unknown hydrocarbon	21.17	8000 J					
Unknown	21.22	5400 J					
Unknown	22.93	5200 J					
Unknown Alkane	25.05	2400 J					
Unknown	25.75	3400 J					
Unknown	26.00	1800 J					
Unknown Alkane	26.40	12000 J					
Unknown hydrocarbon	26.59	2600 J					
Unknown Alkane	28.06	14000 J					
Unknown	28.49	1600 J					
Unknown	29:06	1800 J					
Unknown	29.79	1100 J					
Unknown Alkane	30.25	2700 J					
Unknown	31.64	1600 J					

tic-sed

Inorganic Analysis for Sediment Samples					
	Decatur/	Barding & Spaw			
			ons and Number	•	
Metals and			ons in mg/kg		
Cyanide	STOI	ST02	ST03	ST04	
				Background	
Aluminum	2310 *	5130 *	6760 *	5290 *	
Antimony	4.3 U	5.4 U	6.8 U	13.9 U	
Arsenic	5.0 JN*+	14.1 ЛN*	49.3 JN*S	8.5 JN*	
Barium	29.0 B	150	205	87.0 B	
Beryllium	0.20 U	0.26 U	0.32 U	0.66 U	
Cadmium	0.32 U	0.40 U	0.50 U	1.0 U	
Calcium	51200	35500	48900	20200	
Chromium	9.2	8.5 J	13.2 J	12.5 J	
Cobalt	3.5 B	5.4 B	7.0 B	6.6 B	
Соррег	18.7 *	26.5 *	51.4 *	28.7 J*	
Iron	16600 J*	29000 J*	35000 J*	12300 J*	
Lead	8.5 JN	7.7 JN	30.9 JN	41.9 JN	
Magnesium	17400 J*	11700 J*	10500 J*	7090 J*	
Manganese	472 J*	265 J*	682 J*	747 J*	
Mercury	0.06 U	0.07 U	0.16 B	0.17 U	
Nickel	8.8 B	10.3 B	16.5	17.3 B	
Potassium	503 B	1090 B	1430 B	1140 B	
Selenium	0.72 UJNW	0.86 UJNW	1.0 UJNW	2.3 UJNW	
Silver	1.0 U	2.3 B	1.6 U	3.4 U	
Sodium	94.8 JB	116 B	398 B	334 B	
Thallium	0.44 U	0.53 U	0.64 U	1.4 U	
Vanadium	10.0 B	14.2 B	21.3	13.1 B	
Zinc	35.3 *	33.3 *	239 .	92.4 *	
Cyanide	0.58 U	0.72 U	0.84 U	1.9 U	

sedmeta

3 - R. 3 - R.	- į.	A second			
Volatile Organic Ar	nalysis for Soil Samples				
Tentatively Ide	ntified Compounds				
Decatur/Bardin	g & Spawr Landfill				
Concentrations in ug/kg					
	Retention	Estimated			
Compound Name	Time	Concentration			
Sam	ole SS01				
2-Tridecanone	20.87	15 JN			
Sample SS	Sample SS04 Background				
alphapinene	20.95	11 JN			
I-Nonadecene	23.81	26 JN			
Benzeneacetic acid, .alpha.,	24.12	34_JN			

tic-vol

Semi-volatile Organic Analysis for Soil Samples Decatur/Barding & Spawr Landfill

	Sample Location and Number				
Semi-volatile		Concentrations in ug/kg			
Compound	SS01	SS02	SS03	SS04	
				Background	
Hexachlorobenzene	520 U	460 U	480 U	520 U	
Pentachlorophenol	1200 U	1100 U	1200 U	1200 U	
Phenanthrene	47 J	460 U	480 U	520 U	
Anthracene	520 U	460 U	480 U	520 U	
Carbazole	520 U	460 U	480 U	520 U	
di-n-Butylphthalate	520 UJB	460 UJB	480 UJB	520 UJB	
Fluoranthene	57 J_	20 J	17 J	13 J	
Pvrene	54 J	460 U	18 J	11 J	
Butylbenzylphthalate	520 U	460 U	480 U	520 U	
3,3'-Dichlorobenzidine	520 U	460 U	480 U	520 U	
Benzo(a)Anthracene	30 J	460 U	480 U	520 U	
Chrysene	30 J	460 U	480 U	520 U	
bis(2-Ethylhexyl)Phthalate	220 J	120 J	34 J	27 J	
di-n-Octyl Phthalate	520 U	460 U	480 U	520 U	
Benzo(b)Fluoranthene	52 J	460 U	480 U	520 U	
Benzo(k)Fluoranthene	520 U	460 U	480 U	520 U	
Benzo(a)Pyrene	43 J	460 U	480 U	520 U	
Indeno(1,2,3-cd)Pyrene	520 U	460 U	480 U	520 U	
Dibenzo(a,h)Anthracene	520 U	460 U	480 U	520 U	
Benzo(g,h,i)Perylene	520 U	460 U	480 U	520 U	
Total Number of TICs	21	21	21	22	

soil-sv

Semi-volatile Organic Analysis for Soil Samples
Tentatively Identified Compounds
Decatur/Barding & Spawr Landfill
Concentrations in ug/kg

Concentrations in ug/kg				
	Retention	Estimated		
Compound Name	Time	Concentration		
Sample SS03				
3-Penten-2-one, 4-methyl-	4.97	1100 ЛN		
Unknown	5.52	200 J		
Butane, 2,3-dichloro-2-methy	5.66	150 ЛN		
Unknown	5.75	840 J		
2-Pentanone, 4-hydroxy-4-met	6.50	36000 JNA		
2-Hexen-1-ol, (Z) -	7.50	100 JN		
Cyclohexanone	7.67	150_UJBN_		
Unknown	8.25	340 UJB		
Unknown	15.48	120 J		
Hexanedioic acid, dioctyl es	39.00	3400 UJBN		
Unknown Alkane	43.20	120 J		
(Z) 14- Tricosenyl formate	47.31	320 JN		
Unknown	47.97	740 J		
l-Hentetracontanol	4.00	800 JN		
Unknown	49.64	640 J		
Unknown	49.95	360 J		
Unknown	50.15	360 J		
Unknown	51.24	150 J		
Stigmast-4-en-3-one	52.04	150 JN		
Unknown	52.98	120 J		
Unknown	53.48	240 J		
Sa	mple SS04			
Unknown	5.74	360 UJB		
Dodecanamide, N,N-bis(2-hydr	29.05	280 JN		
9, 12-Octadecadienoic acid (Z	31.77	240 Л		
Hexanedioic acid. dioctyl es	35.59	3800 UJBN		
I-Dotriacontanol	37.04	460 JN		
Hexadecanal	38.88	420 JN		
1-Dotriacontanol	39.71	4200 JN		
Unknown Alkane	40.97	360 J		
Unknown Alkane	42.19	4200 J		
17-Octadecenal	43.78	1400 JN		
Unknown Alkane	44.47	5200 J		
Unknown	44.92	580 J		
Unknown	45.54	340 J		
Stigmasterol	45.92	580 JN		
(Z) 14-Tricosenyl formate	46.02	920 JN		
Unknown	46.61	4600 J		
Nonacosanol	46.73	520 JN		
Unknown	47.09	480 J		
Unknown	47.48	560 J		
Unknown	47.90	1200 J		
Unknown	48.66	1800 J		
Unknown	48.83	3600 J		

	舞 等	4:7	#.	id V		
	-	c Analysis for Soil S	-			
<u> </u>	Decatur/Barding & Spawr Landfill Sample Locations and Number					
Metals		Concentrations in mg/kg				
and	SS01					
Cyanide	3501	5502	3503	SS04 Background		
Aluminum	4760	3870	13100	3330		
Antimony	11.6 UJN	12.3 UJN	12.1 UJN	12.6 UJN		
Arsenic	5.1 JN	3.7 JN	7.1 JN	3.7 JN		
Barium	39.3 B	32.9 B	92.0	72.0		
Beryllium	1.2 U	1.2 U	1.2 U	1.3 U		
Cadmium	1.2 U	1.2 U	1.2 U	1.3 U		
Calcium	16400 J*	44400 J*	3190 J*	1740 J*		
Chromium	7.3	6.4	17.7	4.9		
Cobalt	5.3 B	3,2 B	9.5 B	6.7 B		
Copper	11.7	9.5	18.4	6.4		
Iron	10200	8820	22100	7050		
Lead	28.9	16.1	20.9	27.6		
Magnesium	7910 J*	15800 J*	4250 J*	844 JB*		
Manganese	328 JN	260 JN	485 JN	816 JN		
Mercury	0.12 U	0.12 U	0.12 U	0.13 U		
Nickel	13.2	11.0	30.0	9.6 B		
Potassium	804 B	833 B	2070	561 B		
Selenium	0.46 UJN	0.49 UJN	0.48 UJN	0.51 UJN		
Silver	2.3 UJN	2.5 UJN	2.4 UJN	2.5 UJN		
Sodium	231 U	247 U	242 U	253 U		
Thallium	0.46 UJNW	0.49 UJN	0.48 UJN	0.51 UJNW		
Vanadium	11.7	9.3 B	25.8	9.9 B		
Zinc	42.6	37.8	77.7	36.3		
Cyanide	0.17 U	0.19 U	_ 0.18 U	0.19 U		

1.7

soilmei

APPENDIX F
WELL LOGS

Blue Copy - Well Owner

INSTRUCTIONS TO LLERS

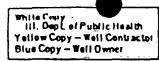
FILL IN ALL PERTINENT INFORMATION REQU ED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH PROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

05841905 Sic ?

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

	ILLINOIS DEPARTMENT OF PUBLIC HEALTH	GEOLOGICAL AND WATER SURVEYS WELL RECORD	
	WELL CONSTRUCTION REPORT	Sanita : Dist of Decatur	
		10. Property owner BEAM Associates Well No	
1.	Type of Well	Address 1999 W. ETONG - Decatur	
	a. Dug Bored Hole Diamin. Depthft.	Driller BEMAShburn License No. 92-53	<u>0</u> .
	Curb material Buried Slab: YesNo	11. Permit No. 10.5 134 Date Oct 6-82	
	b. Drivenin. Depthit.	12. Water from Sond + France 13. County Macon	_ · · . ·
	c. Drilled X Finished in Drift X In Rock In Rock	at depth 12 to 38 ft. X Sec. 241	T -
	Tubular 💢 . Gravel Packed	14. Screen: Diam. 6 in. Twp. 16 N	
	d. Grout: (KIND) FROM (Pt.) TO (Ft.)	Length: 8 ft. Slot 124 15 Rge. 15	14
	(RIND) PROB (FL) TO (FL)	4' - 4' Elev.	1_1
		15. Casing and Liner Pipe	177
			المنتط
		Diam. (in.) Kind and Weight From (Ft.) To (Ft.) LOCATION SECTION	IN
2	Distance to Nearest:	6" Plastic +1 30 SECTION 390'S 115	PLAT ://.i かをん
۷.			
	Building 1000 Ft. Seepage Tile Field Cess Pool Sewer (non Cast irpn)	∃E SE /	
	Cess Pool Sewer (non Cast irpn) Privy Sewer (Cast iron)	16 61 11-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	austrial)
		16. Size Hole below casing: 6 in.	
	Septic Tank 1000 Barnyard Manure Pile	17. Static level 9 (t. below casing top which is 1	
2	Leaching Pit Manure Pile No_X	above ground level. Pumping level 1.3 ft. when pumping at 1.	112
э. А	Date well completed 5 PDT 30-1982	gpm for 4 hours. Recovery 30 Secon	105
ξ.	Permanent Pump Installed? Yes Date No	18. FORMATIONS PASSED THROUGH THICKNESS DEPT	H OF
J.	Manufacturer Type Location		
	Capacitygpm. Depth of SettingFt.	Drown Cloy 12/1	<u>3 </u>
6	Well Top Sealed? Yes X No Type	Sanda Enovel 263	Ø:
	Pitless Adapter Installed? YesNoX	Sun Budyer AB L	<u>a_</u>
••	Manufacturer Model Number		
	How attached to casing?		
8.	Well Disinfected? Yes No X		
9.	Pump and Equipment Disinfected? YesNo	·	
10.	Pressure Tank Sizegal. Type	·	
			 -
11.	LocationNoX		
	MARKS:		
			
		(CONTINUE OR) SEPARATE SHEET IF NECESSARY)	
		SIGNED K ALLED May Deliver land 28	

IDPH '065 NB-1 INSTRUCTION DRILLERS


FILL IN ALL PERTINENT INFORMATION REQUESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH FROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

ı.	Type of Well			
•			ole Dlam. <u>***</u> in urled Slab: Yes_	. Depth 56 It.
				Depthft.
	Tubular	Grovel P	cked	In Rock
	d. Grout:			
		(KIND)	FROM (Ft.)	TO (F1.)
			<u> </u>	
		<u> </u>		<u> </u>
			1	
2.	Distance to New	gest:		
	Building		Seepage Tile Fie	old
	Cess Pool			iron)
)
	Privy Septic Tank			
	Leaching Pit_			- ···
3.	Well furnishes v	vater for human	consumption? Ye	os No
4	Date well compl	leted		·
5,	Permanent Pump	Installed? Ye	a Date	No
			peLoca	
	Capacity	gpm. Depth of	Setting	Ft.
6,	Well Top Sealed	1? YesNo	Тур•	
7.	Pitless Adapter	Installed? Y	esNo	
	Manufacturer	Janes /	Model Numb	oer
	How attached to	casing?(3	
	Mell Districted	1	110	
			ed? Yes	
U.			Туре	
	Location			
		bmitted? Yes	No	
nE.	MARKS:			

	/ / / /			
10. Property owner ()	1-cylin	Wyll No.		
Address 431 Kackes		16x2-		·
Driller Jee Chingan				O/
11. Permit No. 13 cibl	Date _		132/	<u>7 Y</u>
12. Water from James lon	13. Cow	aly	عتين	
at depth 32 to 54 ft.	Sec.	245	5	111
14. Screen: Dlamin.		<i>را در ایا ا</i>		
Length:ft. Slot	Rge	. Lec		
15 C D.	Elev	/		
IS. Casing and Liner Pipe			يالما	
Dism. (in.) Kind and Weight	From (Ft.)	To (F(.)		LION IN '
1. Casta	71	202	CE (H PLAT
36 CAmort	+14	156) C J	
16. Size Hole below casing:	in.	-	•	_
17. Static levelft. below casi	ng top which	ch is		ń.
above ground level. Pumping lev	ol ft.	when pur	nping a	٠
gpm for hours.			\ ;	·
18. FORMATIONS PASSED THROUGH	314	THICK	NE SE DI	PTILOF OTYON
18. FORMATIONS PASSED THROUGH	314			OTYON
18. PONMATIONS PASSED THROUGH	314	THICK!		OTYOM
18. PONMATIONS PASSED THROUGH	014			OTYOM
18. FORMATIONS PASSED THROUGH	016			GTY6M*
18. PONMATIONS PASSED THROUGH	036			OTYON
18. PONMATIONS PASSED THROUGH	036			OTYOM
18. FORMATIONS PASSED THROUGH	DJE .			ерти о р
18. PONMATIONS PASSED THROUGH Yelican Chang Jan La Ching Jan La Ching	034	1 + 2 y 1 3 2 y L 49		PTH OF
18. PORMATIONS PASSED THROUGH	036			OTYOM
Jan Suid Veren Chang Jan de C'ling Silve C'ling	O PE	1 + 2 y 1 3 2 y L 49		OTYOM.
Jan Suid Vikian China Jan La C'lling Jalan C'lling	034	1 + 2 y 1 3 2 y L 49		OTYOM
Jan Suid Jahan Ching Sola Ching Sola Ching Sola Ching		1 4 2 4 1 3 2 1 4 C 4 9 5 T		OTYOM.
CONTINUE ON SEPARATE SHEET IF	NECESSAR	132 132 140 57	, , , , , , , , , , , , , , , , , , , ,	OTYOM.
CONTINUE ON SEPARATE SHEET IF	NECESSARY, Jall	21 32 4C 49 57		OTYON_
CONTINUE ON SEPARATE SHEET IF	NECESSAR	21 32 4C 49 57		PTYLOF OTYOM

GEOLOGICAL AND WATER SURVEYS WELL RECORD

FILL IN ALL PENTINENT INFORMATION NEQUESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH PROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

1.	Curb material b. Driven c. Drilled	B. Drive Pip Finished	ole Dlam. 44 in urled Slab: Yes_ oe Dlamin. in Drift	No
	a. Grout:	(KIND)	FROM (FL)	TO (FL)
	}~			
_	· L		<u></u>	<u> </u>
2.	Distance to Near			
	Building	Ft.	Seepage Tile Fie	
	Cess Pool		Sewer (non Cast	
	Privy		Sewer (Cast iron)	
	Septic Tank			
•	Leaching Pit			
3.	Well furnishes wa Date well complete	ler for human.	Consumption (1)	,s No
4.	Permanent Pump 1	led	- D-1-	No U
J.	Manufacturer	nstallear le T.,	sDate	110 lov
	Capacityg			
5	Well Top Sealed?	Yes Wo	Type	
7.	Pitless Adapter In	stalled? Y	es No L	
• •	Manufacturer			
	How attached to c	asina?		
8.	Well Disinfected?	Yes	_ No	
9.	Pump and Equipm	ent Disinlecte	d? Yes	No
١٥.	Pressure Tank Siz	zegal.	Туре	
	Location		· · · · · · · · · · · · · · · · · · ·	
L	Water Sample Subn	nilled? Yes	No	
	AARKS:		\mathcal{A}	•
	nim	Com	J Cour	2 21866
	no be	ly ye	⊀ .	

GEOLOGICAL AND WATER SURVEYS WI	ELL RECO	RD
Address Circles License	110	-607
y Permetten	-/5'- y_241.5	<u>~~~</u>
at depth 20 to 32 ft. Sec. 14. Screen: Diam In. Twp. Length: ft. Slot Rge.	IE	
15. Casing and Liner Pipe		
Diam. (in.) Rind and Wylght From (F1.) T	/D #EC	SHOT CATION IN TION PLAT 'NE NW
16. Size Hole below casing:in. 17. Static levelft. below casing top which		f a
above ground level. Pumping level ft. w		
18. FORMATIONS PASSED THROUGH	THICKNESS	DEPTH.OF BOTTOM
Clary m		12
- Grandly Jelling chang		20
ghand of gung clay mile		132
- Jung chay!		36
		- A TOP OF THE PARTY OF THE PAR
		- / · · · · · · · · · · · · · · · · · ·
		V • •
(CONTINUE ON SEPARATE SWET IP NECHSSARY) SIGN DAT	e_6-Z	8-8'

FILL IN ALL PERTINENT INFORMATION REQUEED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, HEALTH PRESCRION, ENVIRONMENTAL HEALTH, 525 WEST JEFFERSON, SPRINGFIELD, ILLINOIS 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

1.	Curb materia b. Driven c. Drilled Tubular	Bu Drive Pipe	ried Slab: Yes_ Diamin. In Drift	Depth 73 ft. X No ft. Depth ft. In Rock
	d. Grout:	(KIND)	PROM (FL)	TO (FL)
				
	i	<u> </u>	<u> </u>	L
2.	Distance to Nec			•
	Building	<u>"()</u> Ft. :	Seepage Tile Fie	eld
	Cess Pool		Sewer (non Cast	iron)
	Prive	, ,	Sewer (Cast iron)
	Septic T-ak	92 1	Barnyard	
	Leaching Pit_	<u> </u>	Manure Pile	
3.	Well furnishes	rater for hyman	consumption? Y	es No
4.	Date well comp	leted <u>6 - 8</u>	-88	
5 .	Permanent Pum	p Installed? Yes	s Date	No
	Manufacturer	Ty1	peLoca	tion
	Copacity	gpm. Depth of	Setting	F!/
6.	Well Top Sealed	1? Yes No	Type 🕰	usted stat
7.	L titess washier	installed: 16		
	Manufacturer		Model Numl	Def
_	How attached to	casing?		
8.	Well Disinfected	d? Yes	_No	
		ment Disinfecte		
10.	Pressure Tank	Sizegal.	Type	
	Location		,	,
IL RÉ	Water Sämple: Si MARKS:	ubmitted? Yes		
,			Co	# 22041

GEOLOGICAL AND WATER SURVEYS WELL RECORD

10. Property owner tal Italia	12000	Well No	<u>-</u>
Address			
Driller Al Dugal	Licens	No. O Co	1200318
11. Permit No. <u>003/46</u>	Date	6- 8-S	18
12. Water from	13. Cour	ty	Lun
of depth 2 8 to 42 ft.	San	24.41	
14. Screen: Diamin.		TEN	
Length:ft. Slot		1/3	
Lengtutt. 510t	Ngo. Elev		
15. Casing and Liner Pipe	FIEA		
Diem. (in.) Kind and Veight	Fra (Fi.)	To (Pt,)	MOT LOCATION IN
6 2ch 2/	C		ECTION PLAT
7/	10		W NW NE
36	127	~~~~	W 1400 11
LL			
16. Size Hole below casing: 17. Static levelft. below casin above ground level. Pumping leve gpm for bours.	d tob Apro		
18. FORMATIONS PASSED THROUGH	ч	THICKN	DEPTH OF BOTTOM
Tap loit		4	
Milan cla	11/	28	,
David and al	will	15	, , , , , , , , , , , , , , , , , , , ,
2)394 1	T.	26	,
			-
·			
		1	- (
		1	\
CONTINUE ON SEPARATE SHEET IF I			

White Copy —

111, Dept. of Public Health
Yellow Copy — Well Contractor
Blue Copy — Well Owner

FILL IN ALL PERTINENT INFORMATION REQUES NO AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH PROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

	P Deiven	Drive P	Buried Slab: Yes_ ipe Diamin	Denth (t		
			d in Drift			
	Tubular -	. Gravel I	Packed X			
	d. Grout:	· · · · · · · · · · · · · · · · · · ·				
	_	(KIND)	PROM (Pt.)	TO (PL)		
				<u> </u>		
	[
_						
2.	Distance to Neuro			1		
	Building		Seepage Tile Fi			
	Cess Pool		Sewer (non Cast			
	Privy		Sewer (Cast Iron			
	Septic Tank		Barnyard			
_	Leaching Pit					
3.	Well furnishes water for human consumption? Yes X No					
4.	Date well comple	ted <u>June</u>	27. 1979	DV ruiggon		
5,	Permanent Pump Installed? YesX Date 7/79 - BY MUSTOM Manufacturer Valley Type 1/2 HP Location Hell					
	Manulacturer	TTGA .	ype <u>2 nr</u> Loca	tionHell		
_	Capacity i. g	pm. Depth o	of Setting52	F		
			NoType			
٠.	Manufactures D	uarentea t	Yes_x No			
	Way attached to	aneina?	Model Num Clamp	DEI		
Ω	Well Disinfected?	Cusing!	No			
u. a	Dump and Faring	ent Disimina	ited? Yes	No		
J. N	mih mid ridnibii	42	l. Type Well	-x-Trol		
U .			i. Type			
1	Water Sample Sub	-itted2 V	esNo			
	MARKS:	mitten I	ـــــ 110 ـــــــــــــــــــــــــــــ			

GEOLOGICAL AND WATER SURVEYS WELL RECORD

10. Propert	ly owner Mr. Steve B	dwards	Well No	•	
Addres	13 H.H. B Box 399A	Decatur,	n. 6	<u> 2526</u>	
Driller	Joseph R. Reynolds	Licens	• No	92-6	01
11. Permit	No. 87194	Date	une 27	19	79
12. Water f	Irom Clacial Drift	13. Сош	nty <u>Ma</u>	con	
at dani	h 40 to 40 11 12 3	Sec.	250		التليلا
14. Screen	: Diam. In.	Two	. 16N	` }─	
		Rae	1E	<u> </u>	╎┈ ┼╌╅╌┤
		-		.	├─├─ ├
15. Casing	· · · · · · · · · · · · · · · · · · ·	<u></u>		با	
Diem. (in.)	Kind and Weight	From (Ft.)	To (FL.)		CATION IN
10	Plastic	+1	-17		
36	Concrete	-17	-60	NE	NAA G
284	Concel	-60	-113		
16. Size H	ole below casing:	in.			
17. Static	17. Static level(t. below casing top which				
		el ft.	when pu	mples	j at
gpm lo	r hours.	•			
18.	FORMATIONS PASSED THROUG	3)[THIC	NESS	DEPTH OF BOTTOM
Top	Soil		0-	<u>3'</u>	<u> </u>
gpm forhours. 18. FORMATIONS PASSED THROUGH Top Soil Hard Pan			1		
gpm forhours. 18. FORMATIONS PASSED THROUGH Top Soil Hard Pan Glacial Drift					
18. FORMATIONS PASSED THROUGH Top Soil Hard Pan Glacial Drift Sand			38		
gpm forhours. 18. FORMATIONS PASSED THROUGH Top Soil Hard Pan Glacial Drift				•	
San	•			•	•
•	Driller Joseph R. Reynolds 1. Permit No. 87194 2. Water from Glacial Drift		42	<u> </u>	•
Clac	d cial Drift		THICKNESS DEPTHON 120° 38° 12° 15° 16°		
Clac	d d d		42 55 60		•
Clac	d cial Drift		42 55 60		•
Clac	d d d		42 55 60		•
San	nd rial Drift nd		55 60 73		•
Clac San (CONTINU	Drift Drift	NECESSAR	42 55 60 73	•	•

1DPH 4.065 1/74 - KNB-1

PILL IN ALL PERTINENT INFORMATION QUESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, IMER HEALTH PROTECTION, 535 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 42781. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

1.	b. Driven . Dri c. Drilled Fin Tubular Gra d. Grout:	Bu ve Pipe iished i vel Pa	Hole Diam. 43 in. Depth 6t. Buried Slab: Yes No			
	(RIN	D)	PROM (Fi.)	TO (FL)		
2	Distance to Nearest:					
	Building F	9. 9	Seengge Tile Fig	old		
	Cess Pool		• •	iron)		
	Privy)		
	Septic Tank		•			
3	Leaching Pit	— '	consumption? Y	No.		
<u> </u>	Date well completed	· com can	9-74			
5.		d? Yes	Y. Date 9-	79 No. 4		
_	Manufacturer F & W	Tvt	Local	ion will		
	Capacity 10 gpm. De	oth of	Setting 35	FL.		
6.	Well Top Segled? Yes	X No	Type	·		
7.	Pitless Adapter Installed	? Ye	s X No			
	Manufacturer Beker		Model Numb	er		
	Manufacturer Bellet How attached to coming?	130	15			
8.	Well Disinfected? Yes.	<u> </u>	_No			
9.	Pump and Equipment Dis	infecte	d? Yes_X	No		
lO.	Pressure Tank Size	द्रहेचा.	TypeCIA	<u>. </u>		
	Location	~ .				
	Water Sample Submitted? MARKS:	Yes	No			

GEOLOGICAL AND WATER SURVEYS WELL RECORD

	vo 1 .) `				
0. Proper	ly owner to low TU	itts	Well Na			
Addres	SR8 Ner	stew	12			
Driller	Des Coakes	Licens	e No	100	2-15	
11. Permit	No. 89495	Date	2-29	2		
12. Water i	from Clarificanty	<u></u> 13. Cou	aty	-22,	Daces	
ot dep	th 17 to 11.	Sec.	24	b		
	: Dleamin.		. 16N	-	1-1-1	
	:ft. Slot		18-	. -		
		Elev	/	.		
15. Casing	and Liner Pipe			L	السالية	
Diem (im.)	Kind and Weight	From (FL.)	To (Ft.)	LO	MOW CATION IN	
Þ	Pre	0	14	SEC.	TION PLAT	_
36	Concrete	14	40	NF	SES	
6 Stee H	ole below casing:	la la		1		
	levelft. below cash		h is		. 6.	
	ground level. Pumping leve					
	r hours.	۰۱۰ ســـــــ ۵۱۰	anen be	mpin	y	
		 			Lamento de	•
8.	ORMATIONS I SED THROUG)H	THICK	HERE	DEPTH OF BOTTOM	
	tan oul		1	1	/	
	1/ 0/	·· ························			8	
	y-Clay					1
	UNIF			7	17_	(
	Shorty Chay		. `	,	18	ָ נ
	Dail		•,	.2	40	
	~~~			<u>. L</u>	70	[
		·				•
					į	
<del></del>			_			
		<del></del>		<del></del>	<del> </del>	
			L			
(CONTINU	E ON SEPARATE SHEET IF	NECESSARY	n		·	
				1		
IGNED 🗻	George C. auly.	D/	TE_Z	<u> </u>	9	
_						